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Summary: Silver(I)-assisted reduction of Blue tetrazolium chloride (3,3′-(3,3′-dimethoxy[1,1′-

biphenyl]-4,4′-diyl)-bis(2,5-diphenyl-2H-tetrazolium) dichloride, BTC) by semicarbazide 

hydrochloride (SCH) was investigated in water-chloroform medium. The obtained colored products 

can be used for the visual detection and sensitive liquid-liquid extraction–spectrophotometric 

determination of Ag(I). Under the optimum conditions the calibration curve (which can be best 

approximated by a third-order polynomial; R2=0.9990) has two linear segments. For Ag(I) 

concentrations up to 0.011 g/ml, the linear regression equation had an intercept that was statistically 

indistinguishable from zero. The limit of detection, limit of quantitation, and molar absorptivity 

coefficient at λmax=573 nm were 0.6 ng/ml, 2 ng/ml and 1.2×106 l/(molcm), respectively. The 

regression equation of the second linear segment (0.021–0.028 g/ml) was A = 200γ – 3.5 (R2=0.9989), 

where γ is the concentration in μg/ml. The relative standard deviation at the 22 ng/ml level (n = 5) was 

3.8 %. The effect of concomitant ions was studied, and the analysis of real samples tested the 

applicability of the developed procedure.  
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Introduction 

 

Silver, a group 11 transition element, is a soft, 

ductile, and malleable metal, superior to all other 

metals in electrical conductivity, thermal conductivity, 

contact resistance and antimicrobial effects. It has 

been known for millennia and has undoubtedly played 

an important role in the development of human 

civilization. Nowadays silver finds applications in 

electronics, electrical engineering, optics, 

electroplating, photography, solar panels, disinfection 
installations, jewelry, coinage, catalytic processes, 

pharmaceuticals, and nanotechnology. 

 

Geochemically, silver is classified as a rare 

metal. In terms of abundance, it ranks 67th among the 

elements in the earth's crust [1, 2] with a median 

content in its bulk of about 56 ng/g [3]. It is found in a 

free state (native silver), as an alloy with gold and 

other elements (copper, lead, cobalt), and in minerals 

usually containing sulfur, chlorine, copper, antimony, 

and arsenic [4, 5]. Most silver (ca. 83 %) is produced 
as a byproduct of lead, copper, and gold refining [5].  

 

Various methods have been used to 

determine trace amounts of silver, including flame 

atomic absorption spectrometry, electrothermal 

atomic absorption spectrometry, inductively coupled 

plasma optical emission spectroscopy, and 

spectrophotometry.  

 

The monotetrazolium salts 2,3,5-triphenyl-

2H-tetrazolium chloride (TTC) [6] and 2,5-diphenyl-

3-(1-naphthyl)-2H-tetrazolium chloride (Tetrazolium 

violet, TV) [7] have been applied for the sensitive 

spectrophotometric determination of Ag(I) ions. 

Under certain conditions, these colorless (leuco) salts 

[8] are reduced by semicarbazide hydrochloride 

(SCH) to colored formazans. Trace amounts of silver 
are sufficient for the color reaction to occur, given that 

1 mole of Ag(I) is responsible for converting 4 moles 

of the tetrazolium salt to formazan [6]. The sensitivity 

of the determination can be further increased by 

combining with liquid–liquid extraction, since the 

resulting formazans are sparingly soluble in water and 

can be easily extracted in small volumes of water-

immiscible solvents [7, 9]. 

 

In the present study, we focus on the 

possibility of using the ditetrazolium salt Blue 
tetrazolium chloride (3,3′-(3,3′-dimethoxy[1,1′-

biphenyl]-4,4′-diyl)-bis(2,5-diphenyl-2H-tetrazolium) 

dichloride, BTC) for the extractive spectrophotometric 

determination of Ag(I). BTC is a commercially 

available reagent used in many fields, such as 

histochemistry, biochemistry, corrosion protection, 

dosimetry, and analytical chemistry [9-15]. It is 

cheaper and more stable under the basic conditions 
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[10, 16, 17] needed to "unlock" the color reaction for 

Ag(I) than other well-known ditetrazolium salts (e. g., 

Nitro blue tetrazolium and Tetranitro blue 

tetrazolium). As a ditetrazolium salt, BTC can form a 

diformazan (Fig. 1) which is more intensely colored 
than the formazans derived from monotetrazolium 

salts [10, 16]. In addition, the transformation to 

colored species is less dependent on the action of 

dissolved oxygen and light [10, 11, 18]. 

 

 
 

Fig. 1: Formulae of Blue tetrazolium chloride (BTC) 

(I), Blue tetrazolium half-formazan (II) and 

Blue tetrazole diformazan (III). 

 

Experimental 

 

Reagents and Instruments 

 

The stock solution of Ag(I) was prepared 
from analytically pure AgNO3 (Raj-Khim Product 

EOOD, Bulgaria) following Nagaraja et al. [6]. 

Working 5×10–6 mol/l Ag(I) solutions were obtained 

by diluting the stock solution. The other chemicals 

were supplied from Merck: BTC (for microbiology), 

SCH ( 99 %) and NaOH (for analysis). Aqueous 

solutions of these chemicals were made at the 

following concentrations: 210–3 mol/l of BTC, 610–

2 mol/l of SCH and 5 mol/l of NaOH. Deionized water 

(18.2 MΩ cm, ELGA-Veolia LabWater, UK) was used 

throughout the work. Chloroform (Honeywell Riedel-

de Haen) was redistilled and used repeatedly. 

Absorbance was recorded on an Ultrospec 3300 pro 

UV-Vis spectrophotometer (UK), supplied with 1 cm 
quartz cells. The pH was evaluated with a WTW 

Inolab 7110 pH meter. 

 

Procedure for Establishing the Optimum Conditions 

 

Solutions of Ag(I), BTC, SCH and NaOH 

were introduced into a glass separatory funnel with a 

PTFE stopcock. The contents were diluted with water 

to a total volume of 25 ml and 4 ml of chloroform was 

added. The funnel was then shaken for a fixed period 

(1–5 min). A portion of the chloroform extract was 

filtered through a paper filter into the cell and the 
absorbance was measured against a blank. To achieve 

good repeatability, the separatory funnels were 

cleaned with 2 mol/l NaOH by shaking for ca. 1 min. 

 

Recommended Procedure for Silver(I) Determination 

 

In a separatory funnel were successively 

added an aliquot of the analyzed solution, 0.5 ml of 

210–3 mol/l BTC solution, and 1.5 ml of 610–2 mol/l 

SCH solution. Water and NaOH solution were added 

to increase the pH to 12.2 ± 0.2 and the volume to 25 

ml. Then 4 ml of chloroform was added, and the funnel 

was shaken for 2 min. A portion of the chloroform 
layer was poured into the cell and absorbance was 

recorded against a blank at λ = 573 nm. The 

concentration of Ag(I) was determined using a 

calibration curve. 

 

Samples and Sample Preparation 

 

Studying silver films for medical applications 

is a multi-step task involving the dissolution of the 

incorporated silver [19, 20]. For this purpose, silver 

films deposited under different experimental 
conditions on anodized aluminum alloy (EN AW 

1050A) were dissolved at room temperature in a 

mixture (40 ml) of concentrated nitric acid and water 

(1:1). Before analysis, the obtained solutions were 

diluted with water in 100-ml volumetric flasks.  

  

Results and Discussion 

 

The reduction of tetrazolium salts to 

formazans can be affected by many factors, including 

dissolved gases [21, 22], irradiation [21-24], organic 

solvents [22, 24, 25], ligands [26], colloids [23], 
suspended particles [24], and heavy metal ions [6, 7, 

17, 23, 26, 27]. Moreover, the spectral characteristics 

of the obtained colored species are dependent on the 



Vidka Vassileva Divarova et al.,    doi.org/10.52568/001394/JCSP/45.06.2023  503 

nature of the solvent [10], parameters of irradiation 

[18, 21, 22], pH [10], temperature [10], complex 

formation processes [28-30], aggregation [31], and 

ability to break down into simpler structures [10]. 

Knowledge of the effect of these factors is important 
for developing a reliable method for 

spectrophotometric determination and/or visual 

detection of various species [7, 14, 32, 33]. 

 

BTC can be converted into two different 

colored species: half-formazan (containing one intact 

tetrazolium ring) and diformazan (containing no 

tetrazolium rings) (Fig. 1). Literature data [10] for 

their absorption maxima and molar absorption 

coefficients are shown in Table 1. Spectra obtained 

under different conditions are given in Fig. 2. When 

the concentration of NaOH is low (spectrum 2), the 
absorbance at 520–530 nm (expected for half-

formazan or the so-called “red component” [10]) is 

close to that at 570–580 nm (expected for diformazan 

or the so-called “blue component”). In spectrum 1, 

however, the "blue component" predominates, and the 

absorption is higher. This indicates that a greater 

amount of diformazan is produced with increasing 

basicity. 

 
 

Fig. 2: UV-Vis spectra of the chloroform extracts in 

the presence (1 and 2) and absence (1' and 2') 

of Ag(I) at different NaOH concentrations. 

cAg = 1.6×10–7 mol/l, cBTC = 4.0×10–5 mol/l, 

cSCH = 3.6×10–3 mol/l, Vchloroform = 4 ml, Vaq. 

phase = 25 ml, tex = 2 min. (1, 1') cNaOH = 

1.4×10–1 mol/l; (2, 2') cNaOH = 2.0×10–2 mol/l. 
 

We were unable to obtain pure diformazan in 

our experiments. In all cases, the recorded spectra 

contain a spectral band at about 310–313 nm that can 

be attributed to the half-formazan [10].  

 
Spectral peculiarities can also be observed at 

high Ag(I) concentrations (Fig. 3, spectrum 3). As 

shown in Fig. 3 a characteristic "tooth" and a minimum 

at about 560 nm are observed when cAg = 2.7×10–7 

mol/l. These spectral features can probably be 

attributed to aggregation of the obtained colored 

species [31]. 

 
 

Fig. 3: UV-Vis spectra of the chloroform extracts at 

different Ag(I) concentrations. cBTC = 

4.0×10–5 mol/l, cSCH = 3.6×10–3 mol/l, pH = 

12.2, Vchloroform = 4 ml, Vaq. phase = 25 ml, tex = 
2 min. (1) cAg = 1.6×10–7 mol/l; (2) cAg = 

2.2×10–7 mol/l; (3) cAg = 2.7×10–7 mol/l. 

 

Effect of Light, Dissolved Oxygen, and Waiting Time  

 

BTC belongs to the group of so-called 

"modern tetrazolium salts", which are little affected by 

the presence of daylight [10, 18]. Our experiments 

conducted under light and dark conditions were 

consistent with this statement. Unlike the redox 

system involving TV [7], the presence of dissolved 
oxygen does not "quench" the color reaction. 

Therefore, it is not necessary to purge the working 

solutions with N2 prior to use [7]. This simplifies the 

procedure and increases its reliability. 

 

Table-1: Absorption maxima (λmax) and molar absorptivity coefficients (εmax) of BTC and the resulting half-

formazan and diformazan [10]. 
Compound λmax , nm εmax , l/(molcm) Solvent(s) 

BTC 250–252 42,200–50,200 H2O or H2O/methanol (9:1) 

Half-formazan 520 29,400 Ethanol/H2O 

530–540 – Tetrahydrofuran 

Diformazan 600 48,100 Dimethylformamide 

580 37,136 Ethanol/chloroform, Dimethylformamide 

590 44,900 Dimethylformamide 

590 49,400 Tetrahydrofuran 
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Fig. 4 shows the effect of waiting time on 

absorbance at three representative wavelengths: 573 

nm (absorption maximum), 520 nm ("red component" 

or half-formazan), and 312 nm (half-formazan). The 

obtained parallel straight lines show no redistribution 
of the colored species during the studied period. 

 

 
 

Fig. 4: Effect of waiting time on absorbance at 312 

nm (1), 520 nm, and 573 nm (3). cAg = 

2.1×10–7 mol/l, cBTC = 4.0×10–5 mol/l, cSCH = 

3.6×10–3 mol/l, pH = 12.2, Vchloroform = 4 ml, 

Vaq. phase = 25 ml, tex = 2 min. 

 

 

 
 

Fig. 5: Effect of SCH concentration in presence (1) 

or absence (2) of Ag(I). cAg = 1×10–7 mol/l, 
cBTC = 4.0×10–5 mol/l, pH = 12.2, Vchloroform = 

4 ml, Vaq. phase = 25 ml, tex = 2 min, λ = 573 

nm. 

 

Effect of SCH Concentration  

 

The effect of SCH concentration is shown in 

Fig. 5. Maximum absorbance in the presence of Ag(I) 

was obtained at about cSCH = 3.6103 mol/l. All 

subsequent experiments were performed at this SCH 

concentration. 
 

Effect of pH 

 

A basic medium is required for color 

development. Repeatable absorbance values were 

obtained at pH 12.2 ± 0.1, adjusted by adding 

appropriate amounts of 5 mol/l NaOH solution. 

 

 

Choice of Volumes of The Two Phases and Shaking 

Time 
 

As in the previous work [7], the selected 

volumes of the aqueous and organic phases were 25 

ml and 4 ml, respectively. Shaking for 2 min was 

enough for the formation of colored species and 

discoloration of the aqueous phase. Therefore, the 

procedure is faster compared to those using TTC (30 

min waiting time) [6] or TV (5 min shaking) [7]. 

 

Choice of BTC Concentration. Calibration Curve and 

Analytical Characteristics  

 
The choice of tetrazolium salt concentration 

is important to achieve satisfactory calibration graph 

parameters. Experiments at three different BTC 

concentrations were performed: 8.0×10–5, 6.0×10–5, 

and 4.0×10–5 mol/l. The most convenient calibration 

curve was obtained at c = 4.0×10–5 mol/l (Fig. 6; the 

optimal conditions are presented in Table 2). Two 

linear segments can be seen in the calibration curve. 

At low Ag(I) concentrations (up to 0.011 μg/ml) the 

linear regression equation was A = 11.1γ – 0.0027 (R2 

= 0.9959), where γ is the concentration in μg/ml. The 
intercept was statistically identical to zero (–

0.0027±0.003), and the molar absorptivity at λ = 573 

nm was ε = 1.2×106 l/(molcm). At higher Ag(I) 

concentrations (0.021–0.028 μg/ml) the linear 

regression equation was A = 200γ – 3.5 (R2 = 0.9989). 

Throughout the whole concentration range studied 

(0.002–0.028 μg/ml), a third-order polynomial 

equation can best approximate the experimental 

results: A = 180263γ3 – 3256.4γ2 + 25.867γ – 0.0183 

(R2 = 0.9990). The limits of detection and quantitation, 

calculated as 3 and 10 times the standard deviation of 

the blank (n = 10) divided by the slope of the first 

linear segment (11.1), were LOD = 6×10–4 μg/ml and 
LOQ = 2×10–3 μg/ml. The relative standard deviation 

at the 0.022 μg/ml level (n = 5) was 3.8 %.  
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Fig. 6: Calibration graph for determination of Ag(I). 
The experimental conditions are given in 

Table-2. 

 

Table-2: Liquid-liquid extraction-spectrophotometric 

optimization*. 
Parameter Optimization 

range 

Optimal 

value 

Wavelength, nm 190–800  573 

Concentration of SCH, 

mol/l 
(2.4–7.1)10–3 3.6×10–3 

Concentration of BTC, 

mol/l 
(4.0–8.0)10–5 4.010–5 

pH 12.0–12.7 12.2** 

Volume of chloroform, ml 3–10 4 

Extraction time, min 1–5  2 

* Optimization experiments performed at room temperature (22 C) and 

volume of the aqueous phase of 25 ml; ** an aliquot of 0.5 ml NaOH 

solution (5 mol/l) was added for 1 ml of the Ag(I) solution (5×10–6 mol/l). 

 

The course of the resulting calibration curve 

can be explained based on the following 

considerations: 

 

1. The linear segment at low Ag(I) concentrations is 

mainly due to the formation of half-formazan. 

2. As the concentration of Ag(I) increases, the 

amount of diformazan produced increases, 

leading to positive deviations from Beer's law. 

3. At high Ag(I) concentrations, the colored species 

begin to aggregate, and the salt amount decreases. 
This leads to negative deviations from Beer's law, 

compensating for the positive deviations 

described above. Therefore, the second linear 

segment (0.021–0.028 μg/ml), is due to the 

balance of two opposing trends. 

 

Effect of Concomitant Ions and Colloidal Silver 

 

The effect of concomitant ions on the 

determination of Ag(I) is shown in Table 3. Most of 

the tested ions (in amounts greater than those listed in 
Table 3) produce a slight decrease in absorbance. 

However, in the case of Al(III), a slight increase is 

observed, accompanied by a hypsochromic shift of the 

absorption maximum. It is important to note that none 

of the investigated ions, including Al(III), can initiate 

a color reaction in the absence of Ag(I). 
 

Table-3: Tolerance limits* of foreign ions in the 

determination of 0.54 μg of Ag(I).  
Foreign ion (FI) FI to AgI ratio 

Li+, Na+, F–, tartrate, citrate 5000 ** 

K+, Zn(II), ReO4
– 1000 

Pb(II), Co(II), borate, sulphate 500 

Al(III) 300 

Mg(II), Ca(II), Ba(II), Cd(II) 200 

Cl– 100 

Fe(III) 50 

Hg(II) 25 

Mo(VI) 10 

V(V), Cu(II) 5 

Cr(III) 0.5 

* Defined as the FI-to-Ag(I) mass ratio that cause a relative error less than 

5%.  

** Above which was not considered. 

 

Silver is present in both dissolved (ionic) and 

colloidal forms in various samples [34, 35]. To assess 

the influence of colloidal silver, we used the 

pharmaceutical product Collargol (Colloidal silver, 

Chemax Pharma AD, Bulgaria). It was found that the 

presence of colloidal silver resulted in higher 

absorbance values than expected. This is consistent 
with the observations of other authors that colloids 

facilitate the conversion of tetrazolium salts to 

formazans [23, 36].  
 

Determination of Silver(I) 
 

The recommended procedure was 

successfully applied to analyze samples containing 

ionic silver. The obtained results (Table 4) agree with 

those obtained by ICP-OES. 
 

Table-4: Determination of Ag(I) in dissolved silver 

films (n = 4). 
Sample Ag(I) found, μg/ml 

Present method (± SD) ICP-OES 

#1 0.95 ± 0.04 0.94 

#2 2.1 ± 0.1 2.18 

#3 2.52 ± 0.09 2.47 

 

Comparison with Existing Procedures 
 

A comparison with other spectrophotometric 

and liquid-liquid extraction (LLE) procedures for the 

Ag(I) determination is made in Table 5. The proposed 

LLE-spectrophotometric procedure can be described 

as very sensitive, simple, and cost-effective. The 

apparent molar absorptivity coefficients of the UV/Vis 

procedures usually vary between 5.04×103 l/(molcm) 

[37] and 4.51×105 l/(molcm) [6]. Procedures 

involving preconcentration techniques, such as 

flotation [38] and dispersive liquid-liquid 
microextraction [39], also fall within these limits.  
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Table-5: Comparison with existing procedures. 
Reagent(s) Technique Sample λ, nm Linear range(s), 

ng/ml 

ε, 

l/(molcm) 

LOD, 

ng/ml 

Ref. 

BDIC+KI DLLME–

UV/Vis 

Nano Silver, semiconductor thin films 566 70–2,100 – 30 [39] 

DC18C6 LLE–FAAS Chemical reagents – Up to 10,000 – 13 [40] 

DTPAB UV/Vis Synthetic mixtures 540 100–30,000  4.3104 1,000 [41] 

MBO+TX-100 UV/Vis Water samples, photographic solutions 294 100–9,000 – 1.6 [42] 

Meloxicam+TX-

100 

UV/Vis Water samples 412 1,000–15,000 1.124104 296 [43] 

MPMP Flotation–

UV/Vis 

Water samples, lead-concentrate 

reference material 

330 10.8–540 2.02105 – [38] 

TTC+SCH UV/Vis Photographic film waste waters 510 20–340  4.51105 8 [6] 

TV+SCH LLE–UV/Vis – 512 13–28 – 13 [7] 

BTC+SCH LLE–UV/Vis Silver films for medical applications 573 2–11;  

21–28  

1.2×106 0.6 This 

work 

Abbreviations: BDIC, bisindocarbocyanine chloride; DC18C6, dicyclohexano-18-crown-6; DLLME, dispersive liquid-liquid microextraction; DTPAB, 2,2'-

di(2,3,4-trihydroxyphenilazo)biphenyl; FAAS, flame atomic absorption spectrometry; LLE, liquid-liquid extraction; MBO, 2-mercaptobenzoxazole; MPMP, 

2-[(2-mercaptophenylimino)methyl]phenol; SCH, semicarbazide hydrochloride ; ТТC, 2,3,5-triphenyl-2H-tetrazolium chloride; TV, Tetrazolium violet; TX-

100, Triton X-100, UV/Vis, UV-visible spectrophotometry 

 

Conclusion 
 

A new extraction-chromogenic system for 

Ag(I) was studied. It allows the spectrophotometric 
determination or visual detection of traces of Ag(I) in 

an easy and economical way. The developed 

procedure is characterized by high sensitivity. It 

outperforms some other procedures in the same 

category in terms of speed, simplicity, and reliability. 
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